
DoS Protection in Knot Resolver
using multi-prefix query counting

Lukáš Ondráček (pictures, most of implementation), Vladimír Čunát (presenting) · October 12, 2024

draft with speaker notes

Introduction: DoS

no rate limiting ability so far, adding now in 2024

better inside resolver to understand DoT, DoH, and in future DoQ

public resolvers are the main use case, e.g.:

cz.nic’s ODVR: https://www.nic.cz/odvr/

DNS4EU instances (to become public in 2025)

also mostly applied in authoritative Knot DNS >= 3.4

1/12 · DoS Protection in Knot Resolver · Lukáš Ondráček (pictures, most of implementation), Vladimír Čunát (presenting)

https://www.nic.cz/odvr/

Overview

2/12 · DoS Protection in Knot Resolver · Lukáš Ondráček (pictures, most of implementation), Vladimír Čunát (presenting)

1. amplification att.

forged UDP source

answers >> queries

still a common DoS technique
attacks through some UDP servers where
answers are bigger than queries, therefore
amplifying the attacker’s traffic

Overview

2/12 · DoS Protection in Knot Resolver · Lukáš Ondráček (pictures, most of implementation), Vladimír Čunát (presenting)

1. amplification att.

forged UDP source

answers >> queries

size limit (1232 B)

rate limiting

truncation
dropping

Size of UDP replies was limited already, primarily
to avoid issues with fragmentation.
Now additionally: restrict response rate for each
address/network, to protect them
1: truncation

same length of answer as its query, i.e. not
amplifying
sane clients retry over TCP; there you can’t
forge source IP like that

2: dropping

(more details discussed later)

Overview

2/12 · DoS Protection in Knot Resolver · Lukáš Ondráček (pictures, most of implementation), Vladimír Čunát (presenting)

1. amplification att.

forged UDP source

answers >> queries

size limit (1232 B)

rate limiting

truncation
dropping

2. CPU overload

Many requests from the same origin can
exhaust cpu time…

Overview

2/12 · DoS Protection in Knot Resolver · Lukáš Ondráček (pictures, most of implementation), Vladimír Čunát (presenting)

1. amplification att.

forged UDP source

answers >> queries

size limit (1232 B)

rate limiting

truncation
dropping

2. CPU overload

…dropping some requests.

Overview

2/12 · DoS Protection in Knot Resolver · Lukáš Ondráček (pictures, most of implementation), Vladimír Čunát (presenting)

1. amplification att.

forged UDP source

answers >> queries

size limit (1232 B)

rate limiting

truncation
dropping

2. CPU overload

prioritization
all except plain UDP

Solution: defer requests from the origins using
more cpu time in the past, so that users that do
not overload the service shouldn’t suffer.
Non-UDP only, because on UDP the source IP
could be faked.

Overview

2/12 · DoS Protection in Knot Resolver · Lukáš Ondráček (pictures, most of implementation), Vladimír Čunát (presenting)

1. amplification att.

forged UDP source

answers >> queries

size limit (1232 B)

rate limiting

truncation
dropping

2. CPU overload

prioritization
all except plain UDP

Outline:
limiting individual hosts,
extending to networks,
different limits for dropping and truncating,
prioritization,
implementation details.

Limiting individual clients

3/12 · DoS Protection in Knot Resolver · Lukáš Ondráček (pictures, most of implementation), Vladimír Čunát (presenting)

counters for
addresses

instant limit LI

Mapping of addresses to counters – simplified.
Values are counts of unrestricted queries, up to
instant limit – max number of queries in a short
period of time.

Limiting individual clients

3/12 · DoS Protection in Knot Resolver · Lukáš Ondráček (pictures, most of implementation), Vladimír Čunát (presenting)

counters for
addresses

instant limit LI

Counting only unrestricted queries.

Limiting individual clients

3/12 · DoS Protection in Knot Resolver · Lukáš Ondráček (pictures, most of implementation), Vladimír Čunát (presenting)

counters for
addresses

instant limit LI

Reaching limit -> restricted response.

Limiting individual clients

3/12 · DoS Protection in Knot Resolver · Lukáš Ondráček (pictures, most of implementation), Vladimír Čunát (presenting)

counters for
addresses

instant limit LI

exponential decay

rate limit

Decreasing by a constant fraction of its value
each ms.
Exponential decay, resembles radioactive decay.
The speed of decreasing given by rate limit –
allowed number of queries per unit of time in the
long-term.

Exponential decay

4/12 · DoS Protection in Knot Resolver · Lukáš Ondráček (pictures, most of implementation), Vladimír Čunát (presenting)

instant limit LI

The limiting is configured by two values: Instant
limit and (long-term) Rate limit.
instant limit – max value of the counter

Exponential decay

4/12 · DoS Protection in Knot Resolver · Lukáš Ondráček (pictures, most of implementation), Vladimír Čunát (presenting)

instant limit LI

rate limit LR

per ms

decay after filling the counter
decreasing by constant fract. of the value
each ms

rate in ms – size of the first step
other steps lower

Exponential decay

4/12 · DoS Protection in Knot Resolver · Lukáš Ondráček (pictures, most of implementation), Vladimír Čunát (presenting)

instant limit LI

rate limit LR

per ms

half-life

(1/3)
ratio of rate to instant gives half-life

Exponential decay

4/12 · DoS Protection in Knot Resolver · Lukáš Ondráček (pictures, most of implementation), Vladimír Čunát (presenting)

instant limit LI

rate limit LR

per ms

half-life

(2/3)

Exponential decay

4/12 · DoS Protection in Knot Resolver · Lukáš Ondráček (pictures, most of implementation), Vladimír Čunát (presenting)

instant limit LI

rate limit LR

per ms

half-life

(3/3)

Constant query rate example

5/12 · DoS Protection in Knot Resolver · Lukáš Ondráček (pictures, most of implementation), Vladimír Čunát (presenting)

instant limit LI

rate limit LR

per ms

half-life

query rate QR

per ms

(1/3)
Example: constant query rate under rate limit

no restriction

Constant query rate example

5/12 · DoS Protection in Knot Resolver · Lukáš Ondráček (pictures, most of implementation), Vladimír Čunát (presenting)

instant limit LI

rate limit LR

per ms

half-life

query rate QR

per ms

(2/3)
query rate above rate limit

gets restricted at some point in time

Constant query rate example

5/12 · DoS Protection in Knot Resolver · Lukáš Ondráček (pictures, most of implementation), Vladimír Čunát (presenting)

instant limit LI

rate limit LR

per ms

half-life

query rate QR

per ms

(3/3)
query rate above instant limit

restricted just after reaching LI
then according to rate limit

unrestricted queries -> something passes
through, response rate is limited

Limiting networks

6/12 · DoS Protection in Knot Resolver · Lukáš Ondráček (pictures, most of implementation), Vladimír Čunát (presenting)

IPv4
/32: 1
/24: 32
/20: 256
/18: 768

IPv6
/128: 1
/64: 2
/56: 3
/48: 4
/32: 64

Attackers won’t play nice.
Limiting individual IPs doesn’t suffice.
Usual approach: limit a single prefix size.
We: maintain counters for several chosen
prefixes.
Constants multiplying limits based on prefix
size.
Shorter prefix -> larger network -> higher limits.
Same multiplier for rate and instant -> half-life
unchanged.

Limiting networks

6/12 · DoS Protection in Knot Resolver · Lukáš Ondráček (pictures, most of implementation), Vladimír Čunát (presenting)

IPv4
/32: 1
/24: 32
/20: 256
/18: 768

IPv6
/128: 1
/64: 2
/56: 3
/48: 4
/32: 64

All involved counters incremented or none of
them…

Limiting networks

6/12 · DoS Protection in Knot Resolver · Lukáš Ondráček (pictures, most of implementation), Vladimír Čunát (presenting)

IPv4
/32: 1
/24: 32
/20: 256
/18: 768

IPv6
/128: 1
/64: 2
/56: 3
/48: 4
/32: 64

…in which case restricted.
read-only, faster

Multiple limits

7/12 · DoS Protection in Knot Resolver · Lukáš Ondráček (pictures, most of implementation), Vladimír Čunát (presenting)

hard limits

instant LI
rate LR per ms

So far only hard limits for dropping.
Add lower instant and rate limits for truncating.

Multiple limits

7/12 · DoS Protection in Knot Resolver · Lukáš Ondráček (pictures, most of implementation), Vladimír Čunát (presenting)

hard limits

instant LI
rate LR per ms

soft limits

instant L′I
rate L′R per ms

(1/2)
Incrementing also over soft limit – otherwise
cannot reach hard limit.
Everything truncated until user lowers query
rate.
On the chart query rate between soft and hard
rate limit.

Multiple limits

7/12 · DoS Protection in Knot Resolver · Lukáš Ondráček (pictures, most of implementation), Vladimír Čunát (presenting)

hard limits

instant LI
rate LR per ms

soft limits

instant L′I
rate L′R per ms

(2/2)
Exceeding hard rate limit:

Requests over hard rate limit are dropped.
All other are truncated.

Prioritization

8/12 · DoS Protection in Knot Resolver · Lukáš Ondráček (pictures, most of implementation), Vladimír Čunát (presenting)

not on plain UDP

no configuration

Prioritization

8/12 · DoS Protection in Knot Resolver · Lukáš Ondráček (pictures, most of implementation), Vladimír Čunát (presenting)

not on plain UDP

no configuration

measuring time

only cpu, no wait

Even in legitimate traffic some queries are way
more expensive than average.
Aim: catch as much as possible while
prioritizing users that don’t overload our CPU.
CPU time is measured, waiting not.

Prioritization

8/12 · DoS Protection in Knot Resolver · Lukáš Ondráček (pictures, most of implementation), Vladimír Čunát (presenting)

not on plain UDP

no configuration

measuring time

only cpu, no wait
add to table values

Incrementing counters by time in μs.
different table instance
both addresses and networks

Prioritization

8/12 · DoS Protection in Knot Resolver · Lukáš Ondráček (pictures, most of implementation), Vladimír Čunát (presenting)

not on plain UDP

no configuration

measuring time

only cpu, no wait
add to table values

defer to queues

based on values

Multiple soft limits for different priorities.
A queue for each priority.
May be deferred multiple times on priority
decrease.

Final overview

9/12 · DoS Protection in Knot Resolver · Lukáš Ondráček (pictures, most of implementation), Vladimír Čunát (presenting)

1. amplification att.

forged UDP source

answers >> queries

size limit (1232 B)

rate limiting

truncation
dropping

2. CPU overload

prioritization
all except plain UDP

Finishing with a copy of the overview slide.

Appendix

now extra slides not planned for LinuxDays

10/12 · DoS Protection in Knot Resolver · Lukáš Ondráček (pictures, most of implementation), Vladimír Čunát (presenting)

Implementation

11/12 · DoS Protection in Knot Resolver · Lukáš Ondráček (pictures, most of implementation), Vladimír Čunát (presenting)

hashing

Not possible to store all addresses, we store the
most important ones (to be defined later).
Use hash table to store them.
Collisions may occur.

Implementation

11/12 · DoS Protection in Knot Resolver · Lukáš Ondráček (pictures, most of implementation), Vladimír Čunát (presenting)

hashing
buckets

Use buckets with several (15) most important
records.
Still low number of buckets will have many
collisions.

Implementation

11/12 · DoS Protection in Knot Resolver · Lukáš Ondráček (pictures, most of implementation), Vladimír Čunát (presenting)

hashing
buckets
two tables

Two tables, hashed independently.
The probability of collision in both of them is
much smaller.

Implementation

11/12 · DoS Protection in Knot Resolver · Lukáš Ondráček (pictures, most of implementation), Vladimír Čunát (presenting)

hashing
buckets
two tables

evicting

Let’s say our address is not there.

Implementation

11/12 · DoS Protection in Knot Resolver · Lukáš Ondráček (pictures, most of implementation), Vladimír Čunát (presenting)

hashing
buckets
two tables

evicting
normalized limits

Normalize to the same limit.
It allows comparing values across different
prefix length – gives us the notion of their
importance.

Implementation

11/12 · DoS Protection in Knot Resolver · Lukáš Ondráček (pictures, most of implementation), Vladimír Čunát (presenting)

hashing
buckets
two tables

evicting
normalized limits
choosing minimal

If both buckets are full and new record appears,
evict the one with the smallest value.

Implementation

11/12 · DoS Protection in Knot Resolver · Lukáš Ondráček (pictures, most of implementation), Vladimír Čunát (presenting)

hashing
buckets
two tables

evicting
normalized limits
choosing minimal
keeping value

In fact, evict only the label keeping value.
Multiple items evicting each other share the
value instead of zeroing.
Leads to similar behavior as CountMin sketches,
on overloading.

Implementation

11/12 · DoS Protection in Knot Resolver · Lukáš Ondráček (pictures, most of implementation), Vladimír Čunát (presenting)

hashing
buckets
two tables

evicting
normalized limits
choosing minimal
keeping value

lazy decay

Decay only on access, not each ms.

Implementation

11/12 · DoS Protection in Knot Resolver · Lukáš Ondráček (pictures, most of implementation), Vladimír Čunát (presenting)

hashing
buckets
two tables

evicting
normalized limits
choosing minimal
keeping value

lazy decay

Store timestamp of last decay in each bucket.
Perform decay on all bucket items.

Implementation

11/12 · DoS Protection in Knot Resolver · Lukáš Ondráček (pictures, most of implementation), Vladimír Čunát (presenting)

hashing
buckets
two tables

evicting
normalized limits
choosing minimal
keeping value

lazy decay
memory layout

How to fit it in memory saving as much space as
possible.

Implementation

11/12 · DoS Protection in Knot Resolver · Lukáš Ondráček (pictures, most of implementation), Vladimír Čunát (presenting)

hashing
buckets
two tables

evicting
normalized limits
choosing minimal
keeping value

lazy decay
memory layout

hashed labels

Addresses too long, store just another part of
their hash (16 bits).
Collisions may cause sharing counters, but they
are very infrequent.

Implementation

11/12 · DoS Protection in Knot Resolver · Lukáš Ondráček (pictures, most of implementation), Vladimír Čunát (presenting)

hashing
buckets
two tables

evicting
normalized limits
choosing minimal
keeping value

lazy decay
memory layout

hashed labels
prob. rounding

Store just the whole part of values, > but
rounded probabilistically by the fractional part.
All calculations 32-bit – 16 in integer part, 16 in
fractional.
Before storing the integer part, use the fractional
part as probability of rounding up.

Compare the 16 low significant bits to rnd.

Implementation

11/12 · DoS Protection in Knot Resolver · Lukáš Ondráček (pictures, most of implementation), Vladimír Čunát (presenting)

hashing
buckets
two tables

evicting
normalized limits
choosing minimal
keeping value

lazy decay
memory layout

hashed labels
prob. rounding

So we have 16-bit values, but can increment
even by much smaller fractions.
Still very precise – 2^16 ones required to
perform limiting.

Implementation

11/12 · DoS Protection in Knot Resolver · Lukáš Ondráček (pictures, most of implementation), Vladimír Čunát (presenting)

hashing
buckets
two tables

evicting
normalized limits
choosing minimal
keeping value

lazy decay
memory layout

hashed labels
prob. rounding
fit in cache-line

15x 16-bit label and 16-bit value + 32-bit
timestamp is just cache-line.
Just 2 cache-lines per prefix needed for request,
at most 10 in total.

Implementation

11/12 · DoS Protection in Knot Resolver · Lukáš Ondráček (pictures, most of implementation), Vladimír Čunát (presenting)

hashing
buckets
two tables

evicting
normalized limits
choosing minimal
keeping value

lazy decay
memory layout

hashed labels
prob. rounding
fit in cache-line

optimizations
prefetching
lock-free
vectorization

Further optimizations include:
Prefetching the 10 cache-lines before
accessing.
Using atomic instructions to make the data
structure lock-free.
Using vector instructions to speedup
searching in buckets.

12/12 · DoS Protection in Knot Resolver · Lukáš Ondráček (pictures, most of implementation), Vladimír Čunát (presenting)

Summary

rate-limiting
counting UDP
queries
truncating or
dropping

prioritization
measuring time
reordering

counters
instant/rate limit
exponential decay
higher limits for
shorter prefixes

implementation⇒

