DoS Protection in Knot Resolver

using multi-prefix query counting

Lukáš Ondráček (pictures, most of implementation), Vladimír Čunát (presenting) · October 12, 2024

draft with speaker notes

Introduction: DoS

- no rate limiting ability so far, adding now in 2024
- better *inside* resolver to understand DoT, DoH, and in future DoQ
- public resolvers are the main use case, e.g.:
 - cz.nic's ODVR: <u>https://www.nic.cz/odvr/</u>
 - DNS4EU instances (to become public in 2025)
- also mostly applied in authoritative Knot DNS >= 3.4

- still a common DoS technique
 attacks through some UDP servers where answers are bigger than queries, therefore amplifying the attacker's traffic

- Size of UDP replies was limited already, primarily to avoid issues with fragmentation.
- Now additionally: restrict response rate for each address/network, to protect *them*1: truncation
- - same length of answer as its query, i.e. not
 - amplifying
 sane clients retry over TCP; there you can't forge source IP like that
- 2: dropping

(more details discussed later)

2/12 · DoS Protection in Knot Resolver · Lukáš Ondráček (pictures, most of implementation), Vladimír Čunát (presenting)

• Many requests from the same origin can exhaust cpu time...

CZ DOMAIN REGISTRY CZ_NIC

2/12 · DoS Protection in Knot Resolver · Lukáš Ondráček (pictures, most of implementation), Vladimír Čunát (presenting)

• ...dropping some requests.

CZ DOMAIN REGISTRY cz_nic

2/12 · DoS Protection in Knot Resolver · Lukáš Ondráček (pictures, most of implementation), Vladimír Čunát (presenting)

- Solution: defer requests from the origins using more cpu time in the past, so that users that do not overload the service shouldn't suffer.
 Non-UDP only, because on UDP the source IP could be faked.

CZ DOMAIN REGISTRY

2/12 · DoS Protection in Knot Resolver · Lukáš Ondráček (pictures, most of implementation), Vladimír Čunát (presenting)

- Outline:
 - limiting individual hosts,

 - extending to networks,
 different limits for dropping and truncating,
 - prioritization,
 - implementation details.

CZ-NIC CZ DOMAIN REGISTRY

• counters for addresses

• instant limit *L*₁

172.16.96.1	count in $[0, L_I)$
2001:db8::734	count in $[0, L_I)$

- Mapping of addresses to counters simplified.
 Values are counts of unrestricted queries, up to *instant* limit max number of queries in a short period of time.

• counters for addresses • count in $[0, L_I)$ 172.16.96.1 • instant limit L_I count in $[0, L_I)$ 2001:db8::734

3/12 · DoS Protection in Knot Resolver · Lukáš Ondráček (pictures, most of implementation), Vladimír Čunát (presenting)

-+1 unless overflows

• counters for addresses • 172.16.96.1 count in $[0, L_I)$ • instant limit L_I 2001:db8::734 count in $[0, L_I)$

3/12 · DoS Protection in Knot Resolver · Lukáš Ondráček (pictures, most of implementation), Vladimír Čunát (presenting)

• Reaching limit -> restricted response.

- Decreasing by a constant fraction of its value each ms.
- Exponential decay, resembles radioactive decay.
 The speed of decreasing given by *rate* limit allowed number of queries per unit of time in the long-term.

Exponential decay

4/12 · DoS Protection in Knot Resolver · Lukáš Ondráček (pictures, most of implementation), Vladimír Čunát (presenting)

- The limiting is configured by two values: Instant limit and (long-term) Rate limit.
 instant limit max value of the counter

CZ NIC CZ DOMAIN REGISTRY

Exponential decay

- decay after filling the counter

 decreasing by constant fract. of the value

 each ms • rate in ms - size of the first step
 - other steps lower

Exponential decay

- (1/3)
- ratio of rate to instant gives half-life

CZ NIC CZ DOMAIN REGISTRY

Constant query rate example

5/12 · DoS Protection in Knot Resolver · Lukáš Ondráček (pictures, most of implementation), Vladimír Čunát (presenting)

• (1/3) Èxample: constant query rate under rate limit • no restriction

Constant query rate example

5/12 · DoS Protection in Knot Resolver · Lukáš Ondráček (pictures, most of implementation), Vladimír Čunát (presenting)

query rate above rate limit

 gets restricted at some point in time

Constant query rate example

load **▲** • instant limit L₁ Q_R • rate limit L_R L • per ms • half-life • query rate Q_R • per ms L_R 0 2 3 5 6 0 1 4

5/12 · DoS Protection in Knot Resolver · Lukáš Ondráček (pictures, most of implementation), Vladimír Čunát (presenting)

CZ NIC CZ DOMAIN REGISTRY

Limiting networks

• IPv4	:	
○ /32. 1 ○ /24: 32	172.16.96.1 /32	count in $[0, 1L_I)$
· /20: 256	•	
∕18: 768	172.16.96.0 /24	count in [0, 32 <i>L</i> ₁)
• IPv6	:	
 ∕128: 1 √64: 2 	172.16.96.0 /20	count in [0, 256 L ₁)
○ /04. Z ○ /56: 3		
· /48:4	172.16.64.0 /18	count in [0, 768 <i>L</i> ₁)
∕32: 64	:	
	2001:db8::734 /128	count in $[0, 1L_I)$
	:	
	2001:db8:: /32	count in [0, 64 <i>L</i> ₁)
	•	

- Attackers won't play nice.
 Limiting individual IPs doesn't suffice.
 Usual approach: limit a single prefix size.
 We: maintain counters for several chosen prefixes.
- Constants multiplying limits based on prefix size.
- Shorter prefix -> larger network -> higher limits.
 Same multiplier for rate and instant -> half-life unchanged.

Limiting networks

• IPv4		
○ /32. 1 ○ /24: 32	172.16.96.1/32	count in $[0, 1L_I)$
· /20: 256		
/18: 768	172.16.96.0/24	count in [0, 32 <i>L</i>]
• IPv6		
 ∕128: 1 ∕64: 2 	172.16.96.0/20	count in [0, 256 <i>L</i> ₁)
· /56:3		
· /48: 4	172.16.64.0/18	count in [0, 768 <i>L</i> ₁)
∕32: 64		
	2001:db8::734/128	count in $[0, 1L_I)$
	2001:db8::/32	count in [0, 64 <i>L</i> ₁)
		1 D D

6/12 · DoS Protection in Knot Resolver · Lukáš Ondráček (pictures, most of implementation), Vladimír Čunát (presenting)

• All involved counters incremented or none of them...

Limiting networks

• IPv4		
○ /32. 1 ○ /24: 32	172.16.96.1/32	count in $[0, 1L_I)$
 /20: 256 	•	
∕18: 768	172.16.96.0/24	count in [0, 32 <i>L</i> ₁)
• IPv6	•	
 /128:1 /64:2 	172.16.96.0/20	count in [0, 256 <i>L</i>]
○ /04. Z ○ /56: 3	•	
· /48: 4	172.16.64.0/18	count in [0, 768 <i>L</i> ₁)
· /32:64	•	
	2001:db8::734/128	count in $[0, 1L_I)$
	•	
	2001:db8::/32	count in [0, 64 <i>L</i> ₁)
	•	

6/12 · DoS Protection in Knot Resolver · Lukáš Ondráček (pictures, most of implementation), Vladimír Čunát (presenting)

...in which case restricted.
 read-only, faster

CZ NIC CZ DOMAIN REGISTRY

Multiple limits

- So far only hard limits for dropping.Add lower instant and rate limits for truncating.

Multiple limits

7/12 · DoS Protection in Knot Resolver · Lukáš Ondráček (pictures, most of implementation), Vladimír Čunát (presenting)

- (1/2)
- Incrementing also over soft limit otherwise cannot reach hard limit.
 Everything truncated until user lowers query
- rate.
- On the chart query rate between soft and hard rate limit.

CZ DOMAIN REGISTRY

CZ_NIC

Multiple limits

- (2/2)
- Exceeding hard rate limit:
 Requests over hard rate limit are dropped.
 All other are truncated.

• not on plain UDP no configuration wait wait process process |||||

 not on plain UDP ||||| no configuration process wait process wait • measuring time • only cpu, no wait

- Even in legitimate traffic some queries are way more expensive than average.
 Aim: catch as much as possible while prioritizing users that don't overload our CPU.
 CPU time is measured, waiting not.

- Incrementing counters by time in µs.
 o different table instance

 - both addresses and networks

- Multiple soft limits for different priorities.

 A queue for each priority.
 May be deferred multiple times on priority

 - decrease.

Final overview

9/12 · DoS Protection in Knot Resolver · Lukáš Ondráček (pictures, most of implementation), Vladimír Čunát (presenting)

Finishing with a copy of the overview slide.

CZ-NIC CZ DOMAIN REGISTRY

now extra slides not planned for LinuxDays

ha	sh(172.16.96.1/32) =	101111	01100001101
		•	
	172.16.96.1/32	3	\in [0, 1 L_I)
		•	
	172.16.96.0/24	15.34	\in [0, 32 L_I)
		•	
	172.16.96.0/20	123	∈ [0, 256 <i>L</i> ₁)
		•	
	2001:db8::734/128	7.569	\in [0, 1 L_I)
		•	
	2001:db8::/32	33.21	\in [0, 64 L_I)
		•	

hashing

11/12 · DoS Protection in Knot Resolver · Lukáš Ondráček (pictures, most of implementation), Vladimír Čunát (presenting)

- Not possible to store all addresses, we store the most important ones (to be defined later).
 Use hash table to store them.
- Collisions may occur.

 hashing • buckets

- Use buckets with several (15) most important records.
- Still low number of buckets will have many collisions.

 hashing buckets 	has	sh(172.16.96.1/32) =	10111101100001101	.0101100001
• two tables			•	
		185.43.128.0/18	6450.1 \in [0, 768 L_I)	
		2001::/32	823.4 \in [0, 64 L_I)	
		193.17.47.0/24	467.2 \in [0, 32 L_I)	
			•	
			• •	
			•	
			•	
			• •	
			•	
			•	
				1

11/12 · DoS Protection in Knot Resolver · Lukáš Ondráček (pictures, most of implementation), Vladimír Čunát (presenting)

- Two tables, hashed independently.
 The probability of collision in both of them is much smaller.

.1010100111010011101101001000001011111

CZ-NIC CZ DOMAIN REGISTRY

 hashing buckets 	ha	sh(172.16.96.1/32) =	10111101100001101	010110000
 two tables ovicting 			:	
• evicting		185.43.128.0/18	6450.1 \in [0, 768 L_I)	
		2001::/32	823.4 \in [0, 64 L_I)	
		193.17.47.0/24	467.2 \in [0, 32 L_I)	
			•	
			•	
			•	
			•	J
			•	
			•	
			• •	
		1		

11/12 · DoS Protection in Knot Resolver · Lukáš Ondráček (pictures, most of implementation), Vladimír Čunát (presenting)

11010100111010011101001000001011111

 hashing buckets 	ha	sh(172.16.96.1/32) =	101111011000011010)10110000
 DUCKETS two tables evicting normalized limits 		185.43.128.0/18 2001::/32 193.17.47.0/24	: $11008.17 \in [0, 2^{16})$ $16863.23 \in [0, 2^{16})$ $19136.51 \in [0, 2^{16})$	

11/12 · DoS Protection in Knot Resolver · Lukáš Ondráček (pictures, most of implementation), Vladimír Čunát (presenting)

- Normalize to the same limit.
 It allows comparing values across different prefix length gives us the notion of their importance.

1101010011101001110110100100001011111

-	2001:148f:ffff::/56	8410.453 \in [0, 2 ¹⁶)
	172.230.0.0/20	5098.701 \in [0, 2 ¹⁶)
	2001:1488:ac00::/48	9895.936 \in [0, 2 ¹⁶)
	217.31.192.0/20	$10677.25 \in [0, 2^{16})$

hashing ○ buckets	ha	sh(172.16.96.1/32) =	10111101100001101	010110000110101	.00111010011101101	001000001011111
 two tables evicting normalized limits choosing minimal 		185.43.128.0/18 2001::/32 193.17.47.0/24	: $11008.17 \in [0, 2^{16})$ $16863.23 \in [0, 2^{16})$ $19136.51 \in [0, 2^{16})$			
			•		2001:148f:ffff::/56	8410.453 $\in [0, 2^{16})$
			• • •		172.230.0.0/20	$5098.701 \ \in [0, 2^{16})$
			•		2001:1488:ac00::/48	9895.936 \in [0, 2 ¹⁶)
			•		217.31.192.0/20	$10677.25 \ \in [0, 2^{16})$
			• • • • • • • • • • • • • • • • • • • •			
			•			

11/12 · DoS Protection in Knot Resolver · Lukáš Ondráček (pictures, most of implementation), Vladimír Čunát (presenting)

• If both buckets are full and new record appears, evict the one with the smallest value.

	ha	sh(172.16.96.1/32) =	10111101100001101	.01011000011
			•	
limits	4	185.43.128.0/18	11008.17 $\in [0, 2^{16})$	
ninimal		2001::/32	16863.23 $\in [0, 2^{16})$	
alue		193.17.47.0/24	19136.51 $\in [0, 2^{16})$	
			•	
			• • •	
			•	
			•	
			• • •	
			• • •	
			•	

hashing

• buckets

• two tables

• evicting

- normalized
- choosing r
- keeping va

11/12 · DoS Protection in Knot Resolver · Lukáš Ondráček (pictures, most of implementation), Vladimír Čunát (presenting)

- In fact, evict only the label keeping value.
 Multiple items evicting each other share the value instead of zeroing.
 Leads to similar behavior as CountMin sketches,
- on overloading.

010100111010011101101001000001011111

CZ NIC CZ DOMAIN REGISTRY

		• •		
mits	185.43.128.0/18	11008.17 \in [0, 2 ¹⁶)		
nimal	2001::/32	$16863.23 \in [0, 2^{16})$		
e	193.17.47.0/24	19136.51 \in [0, 2 ¹⁶)		
		•	2001:148f:ffff::/56	8410.453 ∈ [0, 2
		• •	172.16.96.1/32	5098.701 ∈ [0, 2
		•	2001:1488:ac00::/48	9895.936 ∈ [0, 2
		•	217.31.192.0/20	$10677.25 \in [0, 2^{-1}]$
		• •		
		•		•
		•		

hashing

- buckets
- two tables

• evicting

- normalize
- choosing
- keeping va

lazy decay

11/12 · DoS Protection in Knot Resolver · Lukáš Ondráček (pictures, most of implementation), Vladimír Čunát (presenting)

CZNIC CZ DOMAIN REGISTRY

hashing	hash(172.16.96.1/32) = 1011110110000110101010100001			
 buckets 				
 two tables evicting normalized limits choosing minimal keeping value 			•	
		timestamp: 1:23:30.4335		
		185.43.128.0/18	$11008.17 \ \in [0, 2^{16})$	
		2001::/32	$16863.23 \in [0, 2^{16})$	
lazy decay		193.17.47.0/24	19136.51 \in [0, 2 ¹⁶)	
			•	
			•	
			•	
			•	
			•	
			•	

11/12 · DoS Protection in Knot Resolver · Lukáš Ondráček (pictures, most of implementation), Vladimír Čunát (presenting)

- Store timestamp of last decay in each bucket.Perform decay on all bucket items.

.1010100111010011101101001000001011111

CZ-NIC CZ DOMAIN REGISTRY

hashing	hash(172.16.96.1/32) = 1011110110000110101010100011			
 buckets two tables evicting normalized limits choosing minimal keeping value 				
		timestamp: 1:23:30.4335		
		185.43.128.0/18	$11008.17 \in [0, 2^{16})$	
		2001::/32	$16863.23 \ \in [0, 2^{16})$	
lazy decay		193.17.47.0/24	$19136.51 \ \in [0, 2^{16})$	
memory layout			•	I
			-	

11/12 · DoS Protection in Knot Resolver · Lukáš Ondráček (pictures, most of implementation), Vladimír Čunát (presenting)

How to fit it in memory saving as much space as possible.

110101001110100111011010000001011111

timestamp: 1:23:30.4	4335			
2001:148f:ffff::/56	8410.453 $\in [0, 2^{16})$			
172.16.96.1/32	5098.701 \in [0, 2 ¹⁶)			
2001:1488:ac00::/48	9895.936 \in [0, 2 ¹⁶)			
217.31.192.0/20	$10677.25 \in [0, 2^{16})$			
•				

hashing	hash(172.16.96.1/32) = 1011110	11000011010101100001
 buckets two tables evicting normalized limits choosing minimal keeping value 	•	J
	timestamp: 1:23:30.4335	
	111101001000001 11008.1	$7 \in [0, 2^{16})$
	1110000111101000 16863.2	$(3 \in [0, 2^{16}))$
lazy decay	1111100100011110 19136.5	$1 \in [0, 2^{16})$
 hashed labels 	• • •	
	•	
	• • •	

11/12 · DoS Protection in Knot Resolver · Lukáš Ondráček (pictures, most of implementation), Vladimír Čunát (presenting)

Addresses too long, store just another part of their hash (16 bits).
Collisions may cause sharing counters, but they are very infrequent.

CZ-NIC CZ DOMAIN REGISTRY

hashing	ha	sh(172.16.96.1/32) =	10111101100001101	010110)0001
 buckets 					
 two tables 			:		
 evicting o normalized limits o choosing minimal 		timestamp: 1:23:30.4	4335		
		111101001000001	$11008.17 \ \in [0, 2^{16})$		
 keeping value 		1110000111101000	$16863.23 \ \in [0, 2^{16})$		
lazy decay		1111100100011110	$19136.51 \ \in [0, 2^{16})$		
 memory layout hashed labels prob. rounding 					
				-	

11/12 • DoS Protection in Knot Resolver • Lukáš Ondráček (pictures, most of implementation), Vladimír Čunát (presenting)

CZ NIC CZ DOMAIN REGISTRY

hashing	hash(172.16.96.1/32) = 101111011000011010)101100001
 buckets 		
 two tables 		
 evicting normalized limits choosing minimal keeping value 	timestamp: 1:23:30.4335	
	$egin{array}{llllllllllllllllllllllllllllllllllll$	
	1110000111101000 $\lfloor 16863.23 \rfloor < 2^{16}$	
lazy decay	1111100100011110 $\lfloor 19136.51 \rfloor$ < 2 ¹⁶	
 memory layout hashed labels prob. rounding 	•	
	•	
	•	
	•	
	•	

• So we have 16-bit values, but can increment even by much smaller fractions.

Still very precise – 2¹⁶ ones required to perform limiting.

CZ-NIC CZ DOMAIN REGISTRY

• hashing

- \circ buckets
- $\circ\,$ two tables

• evicting

- normalized limits
- $\circ\,$ choosing minimal
- keeping value
- lazy decay
- memory layout
 - hashed labels
 - \circ prob. rounding
 - fit in cache-line

11/12 · DoS Protection in Knot Resolver · Lukáš Ondráček (pictures, most of implementation), Vladimír Čunát (presenting)

• Just 2 cache-lines per prefix needed for request, at most 10 in total.

CZ_NIC CZ DOMAIN REGISTRY

11/12 • DoS Protection in Knot Resolver • Lukáš Ondráček (pictures, most of implementation), Vladimír Čunát (presenting)

hashing

- buckets
- two tables

• evicting

- normalized limits
- choosing minimal
- keeping value
- lazy decay
- memory layout
 - hashed labels
 - prob. rounding
 - fit in cache-line

optimizations

- prefetching
- lock-free
- vectorization

CZ DOMAIN REGISTRY

Summary

- rate-limiting
 - counting UDP queries
 - truncating or dropping

prioritization

• measuring time • reordering

• counters

- instant/rate limit
- exponential decay
- higher limits for shorter prefixes
- implementation⇒

